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Abstract Species distribution models are frequently
used to predict species occurrences in novel con-
ditions, yet few studies have examined the conse-
quences of extrapolating locally collected data to
regional landscapes. Similarly, the process of using
regional data to inform local prediction for species
distribution models has not been adequately evaluat-
ed. Using boosted regression trees, we examined
errors associated with extrapolating models developed
with locally collected abundance data to regional-
scale spatial extents and associated with using
regional data for predictions at a local extent for a
native and non-native plant species across the
northeastern central plains of Colorado. Our objec-
tives were to compare model results and accuracy
between those developed locally and extrapolated
regionally, those developed regionally and extrapolat-
ed locally, and to evaluate extending species distribu-
tion modeling from predicting the probability of
presence to predicting abundance. We developed

models to predict the spatial distribution of plant
species abundance using topographic, remotely
sensed, land cover and soil taxonomic predictor
variables. We compared model predicted mean and
range abundance values to observed values between
local and regional. We also evaluated model predic-
tion performance based on Pearson’s correlation
coefficient. We show that: (1) extrapolating local
models to regional extents may restrict predictions,
(2) regional data can help refine and improve local
predictions, and (3) boosted regression trees can be
useful to model and predict plant species abundance.
Regional sampling designed in concert with large
sampling frameworks such as the National Ecological
Observatory Network may improve our ability to
monitor changes in local species abundance.

Keywords Boosted regression trees . Species
distribution models . Spatial scale . Extrapolation .

National EcologicalObservatoryNetwork . Abundance

Introduction

Scaling ecological patterns and processes is a linger-
ing challenge for ecologists (Levin 1992). Using the
appropriate scale can have impacts on the ability to
not only identify ecological patterns but also to
understand the processes driving those patterns (Scott
et al. 2002). For example, the drivers of change at a
local scale are often influenced by past disturbances
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while drivers at a continental scale are primarily
climatic (Brown et al. 2008). One area where scale
has been especially challenging is predicting species
distributions; often with the use of species distribution
models (SDM).

Species distribution models relate species response
data (either occurrence or abundance) with environ-
mental characteristics (Elith and Leathwick 2009).
These models have met many management objectives
including identifying previously unknown popula-
tions of endangered species (Evangelista et al.
2008b), predicting vulnerable habitats to species
invasions (Stohlgren et al. 2002), estimating species
richness (Graham and Hijmans 2006), and many
others (Elith and Leathwick 2009). The breadth and
application of SDMs has rapidly increased in the past
decade. Advances in computer capabilities, availabil-
ity of geospatial environmental data, and powerful
geographic information systems facilitate modeling
complex ecological interactions to predict species
distributions (Guisan and Thuiller 2005; Elith and
Leathwick 2009). Some of the most common SDMs
include Maxent (Phillips et al. 2006), boosted
regression trees (BRT; Friedman et al. 2000), multi-
variate adaptive regression splines (Friedman 1991),
and Random Forests (Breiman 2001). Each algorithm
offers strengths and weaknesses for modeling species
distributions; multiple studies compare these methods
(Araujo and New 2007; Elith and Graham 2009;
Kumar et al. 2009; Parisien and Moritz 2009).
Although these models are often compared using the
same data set, environmental predictors, and spatial
scale, it is important to consider that SDMs are
designed to handle different types of data sets and
perform best under specific circumstances. For exam-
ple, some models are designed for datasets with only
presence locations like Biomapper (Hirzel et al. 2002)
or Maxent while other models such as BRT or
Random forests require presence and absence data.

Although SDMs were developed to model species
within the environment from which the data were
collected (Guisan and Zimmermann 2000), these
models are now being used to predict species distribu-
tions in space and/or time to novel conditions not
representative of the modeled environment (Elith et al.
2010). This has been referred to as model projection,
generalization, transfer, and extrapolation (Fielding and
Haworth 1995; Randin et al. 2006), hereafter referred
to as extrapolation. Model extrapolation has been

used to predict the distribution of a species under
climate change (Penman et al. 2010), in hypothe-
sized susceptible regions of invasion (Medley 2010),
and over large extents (Mateo-Tomas and Olea
2010). While insights may be gained through
extrapolation, recent studies have suggested that this
may not always be the best approach to model
species distributions in novel environments (Pearson
et al. 2006). Thuiller et al. (2004) demonstrated that
extrapolating SDMs to regions not representing the
complete range of environmental conditions may
lead to highly liberal predictions of species occur-
rence. On the other hand, regional data are more
difficult to collect and require more resources.
Therefore, valuable resources (e.g., personnel, time,
and money) will be saved if local data can be
extrapolated to make accurate regional predictions.

While there have been some studies looking at
extrapolating local prediction to regional extents, to
our knowledge there have not been any studies that have
looked at the impact of using regional data to make
predictions at a local extent. In most cases, the extent of
interest (e.g., national park, watershed, political bound-
ary, etc.) is modeled using data collected at that extent (e.
g., Stohlgren et al. 2010). This makes sense when
modeling the global distribution of a species, but
becomes questionable when modeling a portion of a
species distribution. Here, we explore this concept and
hypothesize that using regional data to make predic-
tions at a local extent can help capture larger
environmental and response variation which has been
shown to improve model results (Elith and Graham
2009) and improve local predictions.

Most SDMs are designed exclusively for presence-
only or presence–absence data and are not compatible
with abundance data. Under this framework, these
models predict the probability of presence or proba-
bility of suitable habitat rather than a prediction of the
number of species. Estimates of abundance allow
managers to prioritize management actions that may
not be possible with predicted presence alone. Before
the advent of powerful computers and geographic
information systems, previous studies predicting
species abundance primarily used regression methods
(Evangelista et al. 2004; Crall et al. 2006). These
methods still serve as a foundation to many recently
developed models (e.g., random forests and boosted
regression trees). Identifying and predicting the
spatial pattern of species abundance has advanced
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through the increased use of geographic information
systems and spatial models (Sagarin et al. 2006). Part
of the issue surrounding the lack of distribution
models predicting abundance in the ecological com-
munity is the fact that modeling abundance data
requires more robust statistical models than presence–
absence data (Austin 2002) and abundance data are
inherently rarer than presence/absence or presence-
only data. Still, there are some recent examples where
SDM were used to model predicted abundance on a
landscape (e.g., Strubbe et al. 2010). The accuracy
and predictive capabilities of models that extrapolate
the distribution of species abundance from local to
regional extents using only locally collected data are
largely unknown.

From management perspective, non-native species
continue to be an economic burden for organizations
responsible for maintaining ecosystem integrity and
processes (Mack et al. 2000). In most cases, the task of
surveying an entire area for non-native species is
unrealistic. Providing spatial abundances models of
non-native species can help managers spatially priori-
tize detection, control and prevention efforts. The
purpose of this study was to examine the issue of
scale (in terms of spatial extent) and abundance
predictions associated with extrapolating SDMs devel-
oped using locally collected data to regional extents
and predictions associated with using regional data to
make predictions at the local extent. Specifically, our
objectives were to: (1) investigate how extrapolating
from local to regional scales impacts model results and
accuracy (2) compare local extent model results and
accuracy from models developed using data inside the
local extent and to those developed with data inside
and outside the local extent, (3) evaluate extending
SDM from predicting probability of presences to
predicting abundance using boosted regression trees.
We used abundance data (i.e., percent foliar cover) of a
native and non-native species on a portion of the
central plains and boosted regression trees.

Methods

Study area

We examined data at two extents on the central plains
of eastern Colorado (Fig. 1). We chose these extents
because they represent two of the four strategic

designs the National Ecological Observatory Network
(NEON) has identified in their continental-scale
research platform for discovering and understanding
the impacts of climate change, land-use change, and
non-native species on ecosystem processes (NEON
2010). There are 20 ecoclimatic domains established
by NEON across the USA, and the local and regional
extents in this study represent the core wildland site
and the approximate footprint of aerial observations
(airborne observatory platform), respectively, within
the Central Plains domain (domain 10).

The core wildland site for domain 10 is at the
Central Plains Experimental Range, which is located
in the Colorado Piedmont section of the Great Plains
(40°49′ N and 104°46′ W). Covering 6,798 ha, the
site represents the local extent of our study area and
focal point of our research. This area is a semi-arid, C4-
dominated native shortgrass steppe ecosystem. Most
of the precipitation occurs during the growing season
from April to September. Grazing by domestic cattle
is the dominant land use in conjunction with research
and monitoring projects including prescribed fire
(Shortgrass Steppe Long Term Ecological Research;
http://www.sgslter.colostate.edu).

The regional extent of our study area covers an
area of 40,000 ha, which represents the 20×20 km
footprint of aerial observations defined by NEON for
this domain. This area was defined by NEON to
collect detailed aerial data about land-use and vege-
tation structure (NEON). The regional extent encom-
passes the local extent and is similar in terms of
climate and ecological characteristics; however, land
use is more diverse. Much of the regional extent is a
mosaic of shortgrass steppe, agricultural land, range-
land, and human development. Highway 85 runs
north–south down the middle of the regional extent
and the large developed area surrounding the town of
Nunn is located in the southern portion.

Species

We chose to model common native and non-native
species to the central plains. Bouteloua gracilis (blue
grama), a warm season perennial bunchgrass, is native
to the shortgrass steppe and considered a dominant
species throughout the Colorado Piedmont. Although it
has evolved on the shortgrass steppe, Marilyn and Hart
(1994) found that B. gracilis recovered poorly on
disturbed sites. Sisymbrium altissimum (tall tumble-
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mustard) is a non-native annual or biannual species
found in disturbed sites with other non-native and
native annuals (Allen and Knight 1984). S. altissimum
can be found on many different soil types (Patman and
Hugh 1961). Although both species are commonly
found in the shortgrass steppe ecosystem, B. gracilis is
generally a dominant species, while S. altissimum is
rarely dominant.

Field data

Local and regional abundance data were combined from
two separate studies. Data for the local extent were
collected in 2008 as a part of a NEON preliminary
assessment for the Central Plains Experimental Range
(Evangelista et al. 2009a) that consisted of 20 sampled
plots. Vegetation cover abundance data were recorded by
estimating the percent cover within a 168-m2 circular,

multi-scale vegetation plot modified from the National
Forest Service Inventory and Analysis Program (Barnett
et al. 2007); (Frayer and Furnival 1999). Regional
abundance data were collected with 72 Braun-Blanquet
plots (Braun-Blanquet 1932). This relatively quick
method of sampling is suited for species–environment
relationships (Wikum and Shanholtzer 1978). These
data were collected at the regional extent with the
exception of two locations which were sampled inside
the local extent. These two samples were added to the
local extent dataset. This provided a dataset of 92
samples for the regional models and 22 samples for the
local models.

Environmental variables

We included soil, land cover, topographic and remote-
ly sensed environmental data as our predictor varia-

Fig. 1 Study area showing sampled plots at the local and regional extents. The local and regional extents are within the larger central
plains domain (National Ecological Observatory Network domain 10)
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bles (Table 1). All predictor variables had a 30-m
resolution. Topographic variables consisted of eleva-
tion, slope, aspect, and solar radiation. No climatic
variables were included in the models because the
spatial extent was too small for these predictors to be
important drivers.

Soil data were downloaded from Soil Data Mart
provided by US Department of Agriculture Natural
Resource Conservation Service (http://soildatamart.
nrcs.usda.gov/). Soil texture has been shown to be an
important predictor of individual plant species on the
shortgrass steppe (Hook et al. 1991). These data were
originally classified by map unit series. We classified
the map series to soil great groups. Soil great groups
are a classification of soil taxonomy that reflects
assemblages of the horizons and the most significant
properties of the whole soil (Soil Survey Staff 1999).

We downloaded LANDFIRE existing Vegetation
Type land cover data from the LANDFIRE website
(http://www.landfire.gov). The LANDFIRE dataset
was developed using a complied field database for
reference plots along with biophysical gradients and
Landsat imagery (Rollins 2009). LANDFIRE uses
land cover classifications defined by NatureServes’s
ecological systems classifications which are ecologi-
cal units at mid-scale resolution. The LANDFIRE
values were grouped to represent nine land cover
types. Open water (11), developed (21, 22, 23, and
24), barren (31 and 2,007), agriculture (81 and 82),
shrubland (2,072, 2,081, 2,086, and 2,107), grassland/
forbland (2,094, 2,127, 2,181, 2,182, and 2,183),

mixedgrass prairie (2,132), shortgrass prairie (2,149),
and riparian (2,159 and 2,162). We used these
grouped land cover types to represent classifications
appropriate for the scales we were modeling and to
allow for more intuitive interpretation of model
results.

Six topographic predictor variables were included
in the models. Topography in conjunction with soil
properties can be a driving factor in plant distributions
on the shortgrass steppe (Burke et al. 1999). Using a
US Geological Survey 30-m digital elevation model
(DEM), we calculated solar radiation in ArcGIS 9.3
(The Environmental System Research Institute, USA).
We applied the time period for solar radiation
calculations from 15 June 2010 to 29 June 2010
which was when the regional extent sampling
occurred. Slope and aspect were also derived from
the DEM and calculated using ArcGIS 9.3.

In addition to land cover and topographic varia-
bles, remotely sensed Landsat 7 ETM+ satellite scene
data were downloaded for 7 July 2000 from USGS
Earth Resources Observation Center (EROS, http://
glovis.usgs.gov/). The scenes were the most recent
cloud free images obtained when the operational
scene line corrector was functioning for the season
the field data were collected. The scenes and derived
vegetation indices were processed using ERDAS
Imagine 2010 (ERDAS Atlanta, GA, USA) and
ArcGIS 9.3 software. We generated three vegetation
indices: Normalized Difference Vegetation Index,
Ratio Vegetation Index and Soil-Adjusted Vegetation

Table 1 List of all environmental predictors included in initial models with their data type and source

Environmental predictor Data type Source

Aspect Continuous Calculated from elevation

Elevation Continuous U.S. Geological Survey (http://eros.usgs.gov)

Enhanced Vegetation Index Continuous Calculated from Landsat bands

Greeness Continuous Calculated from Landsat bands

LANDFIRE vegetation class Discrete http://www.landfire.gov/products_national.php

Normalized Difference Vegetation Index Continuous Calculated from Landsat bands

Ratio Vegetation Index Continuous Calculated from Landsat bands

Slope Continuous Calculated from elevation

Soil brightness Continuous Calculated from Landsat bands

Soil Great Group Discrete Soil Data Mart (http://SoilDataMart@nrcs.usda.gov)

Soil-Adjusted Vegetation Index Continuous Calculated from Landsat bands

Solar radiation Continuous Calculated from elevation

Wetness Continuous Calculated from Landsat bands
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Index (Li and Weng 2005). These indices are for
vegetation and land cover feature estimations. Tas-
seled cap transformations were also conducted for the
Landsat 7 scenes. Tasseled cap transformations
provide measurements of soil brightness (tasseled
cap, band 1), vegetation greenness (tasseled cap, band
2) and soil/vegetation wetness (tasseled cap, band 3)
(Huang et al. 2002). Tasseled cap bands and vegeta-
tion indices have been shown to be effective
predictors of plant occurrences when combined with
SDMs (Evangelista et al. 2009b).

Analyses

For spatial analyses, we chose BRTs to model B. gracilis
and S. altissimum at local and regional extents.
Modeling species abundances using BRTs is a relatively
new method in ecology (Elith et al. 2008). In addition
to being able to model abundance data, we chose BRTs
because they have been shown to perform well with
small sample sizes compared with other SDMs (Wisz et
al. 2008) and because they can incorporate categorical
predictor variables. Boosted regression trees attempt to
minimize the loss function by generalizing many simple
classification and regression trees. Tree-based models,
such as BRTs, accomplish this by applying rules to the
predictors that partition the data into rectangles with the
most homogeneous response (Elith et al. 2008).
Boosting is a form of re-sampling that, unlike other
methods such as bagging or sub-sampling, applies a
weighted probability of a response to be re-sampled
based on previous classifications (Franklin 2009). The
relative importance of the predictor variables is calcu-
lated based on the number of times a predictor variable
was chosen as a splitting node and weighted based on
the improvement to the model based on each split
(Friedman and Meulman 2003). BRTs are able to
decrease over-fitting data by averaging the predictions
of many trees created using subsets of the data
(Franklin 2009).

We used the generalized boosted models package
in R (R Development Core Team 2010) for our BRT
analyses (Friedman et al. 2000). There are a few
settings that can be adjusted when running BRTs. A
low-learning rate decreases the model over learning
but requires more iterations (De’ath 2007). Optimiz-
ing both the learning rate in conjunction with the
number of trees is similar to model regularization.
Regularization prevents models from over-fitting

training data. Interaction depth or tree complexity is
the number of nodes in each tree created. By adding
more nodes to the tree, more variable interactions are
added. With smaller datasets, larger tree complexity
provides no advantage (De’ath 2007). We performed
5,000 iterations and ensured that at least 1,000 trees
were generated for each model (Elith et al. 2008)
accomplished by a learning rate of 0.001 and a tree
complexity of 2.

Preliminarymodels for each species for both the local
and regional extent were constructed using all 13
predictor variables to identify those with the greatest
predictive contributions and reduce the overall number
of variables in our analyses. From these results, we kept
only the top 3 predictors and removed the remaining
variables due to the limited sample size for local models
(Maxwell 2000). From those, we performed a Pear-
son’s cross-correlation test using SYSTAT (version 12;
SYSTAT Software, Port Richmond, California, USA)
to remove highly correlated variables (Pearson’s
correlation coefficient, >0.8 or ≤0.8) keeping the
variable that had the highest contribution and then
selected the next predictor variable with the highest
relative influence to include in the final model. The
variables remaining were used to develop final models
for each extent. Regional models for both species were
developed with data at both the local and regional
extent (n=92) while local models were developed
using only local data (n=22). To evaluate model
performance, we used cross-validation during model
development and fit a linear regression between
predicted values and observed values to calculate
adjusted r2 and also calculated Pearson’s correlation
coefficient (Potts and Elith 2006).

Finally, we compared the mean, minimum and
maximum across the extents for the predicted models.
We also evaluated the difference between predicted
abundance and observed abundance to compare
models developed with local data and models devel-
oped using regional data. The summary statistics were
calculated using SYSTAT.

Results

Predictor variables

Both the local model and the regional model for B.
gracilis had similar predictor variables (Table 2). S.
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altissimum final models for local and regional extents
also had similar predictor variables (Table 3). Soil and
slope proved to be key predictors for both species at
both extents. Soil great group was a key contributor at
the local extent models (>40% relative influence) for
both species, while slope was the important contrib-
utor for the regional extent models (>40% relative
influence).

Model performance

Local and regional models showed significant predic-
tive ability for both B. gracilis and S. altissimum (p<
0.001). The local model for B. gracilis had a slightly
higher explained variance (adjusted R2=0.65) than the
regional model (adjusted R2=0.52). The same was
true for S. altissimum local (adjusted R2=0.45) and
regional (adjusted R2=0.44) models. Local models
also had a stronger association than regional models
when model predictions were compared with ob-
served values (Pearson’s r for local and regional
models for B. gracilis=0.82, 0.72, respectively, and S.
altissimum=0.69, 0.67, respectively).

Predictive map descriptions

For B. gracilis predictions at the local extent, the local
model predicted more uniform abundance with higher
abundance in the east closely aligned with soil
taxonomy (Fig. 2a). The regional model for the local
extent showed much more variation in abundance
predictions than the local model, but showed similar

areas of high abundance (Fig. 2b). At the regional
extent, predictions for the local model of B. gracilis
were highest in the southern portion and extended
northward in bands following suitable soil types
(Fig. 2c). The lowest abundance predictions were
found in the northern portion of the regional extent
where the land cover is more barren and includes a
portion of the Pawnee Buttes National Grassland. The
regional model predictions at the regional extent
differs from the local model in that the highest
predicted abundance values are found in a swath
running from the east to the northwest (Fig. 2d) with
relatively lower abundance predictions in the south
and southwestern portions where there is more human
development.

At the local extent, the mean abundance predic-
tions for the local model (mean=27.4% cover, SE±
6.9) and regional model (mean=22.1% cover, SE±
7.5) for B. gracilis were similar, but the range of
abundance for the local model (33.8% cover) was
narrower than the regional model (39.0% cover;
Table 4). The regional model predicted a maximum
abundance of 44.4% cover which was similar to the
local model maximum abundance predictions (44.8%;
Table 4). Furthermore, the minimum predicted abun-
dance for the regional model was 5.4% while the local
model minimum prediction was 11.0% (Table 4).

For S. altissimum predictions at the local extent,
the local model predicted relatively low abundance
and little variation (Fig. 3a). In contrast, the regional
model had greater prediction variation and predicted
relatively higher abundance at the local extent

Local Regional

Predictor Relative influence Predictor Relative influence

Soil great group 41 Slope 43

Solar radiation 37 Soil great group 30

Slope 22 Solar radiation 27

Table 2 Relative influence
of environmental predictors
for B. gracilis for the local
and regional models

Local Regional

Predictor Relative influence Predictor Relative influence

Soil great group 57 Slope 66

Soil brightness 24 Soil brightness 26

Slope 19 Soil great group 9

Table 3 Relative influence
of environmental predictors
for S. altissimum for the
local and regional models
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(Fig. 3b). At the regional extent, the local model
again predicted relatively low abundance and little
variation with lower abundance predictions in the
southwest and southeast corners of the regional
extent and higher abundance predictions in swaths
that follow soil great groups (Fig. 3c). Conversely,
the regional model had more variation in predictions
and predicted high abundance in the south-central
area of the regional extent that extended northwest
(Fig. 3d). These predictions coincide with the high-
est observed abundance where the land use is
primarily agricultural.

At the local extent, S. altissimum regional and
local models had a large difference in predicted
abundance ranges (local=0.8% cover, regional=

4.1% cover). The difference in the range of predicted
abundance can be attributed to the predicted maxi-
mum abundance for each model (local=1.0% cover,
regional=4.7% cover) even though the predicted
minimum for the local model (local=0.2% cover)
was less than the regional model (regional=0.6%
cover). The predicted mean of the local model was
0.5% cover (SE±0.2) and the regional model mean
was 1.1% cover (SE±0.5).

Difference comparison between observe and predicted
values

For B. gracilis, models developed using local data
predicted an average 12% cover (SE±2.1, n=92)

Fig. 2 Abundance predictions of B. gracilis local and regional
models shown at two extents. a Local extent predictions
modeled using local data and b local extent predictions
modeled using local and regional data. c Regional extent

predictions from the model developed using local data
extrapolated to regional extent and d regional predictions from
the model developed using local data and regional data

5446 Environ Monit Assess (2012) 184:5439–5451



lower than observed values and 0.4% lower (SE±0.4,
n=92) for S. altissimum. Conversely, the regional
models were off by an average 7% cover (SE±2.1,
n=92) for B. gracilis and 0.1% cover (SE±0.3, n=92)
for S. altissimum. For both species, the regional models
predicted abundance values closer to the observed
values than the local models.

Discussion

Using regional data can refine local predictions

Incorporating regional data improved the model range
of predictions at local and regional extents. For both
species, the models developed using regional data to
model the local geographical extent showed a larger
range of predicted abundances (Figs. 2d and 3d). This
was especially true for S. altissimum where the
maximum predicted abundance for the regional model
was more than four times that of the local model. The
improved predictions may be attributed to the
additional landscape elements included by increasing
the extent sampled (Wiens 1989).

A larger range of predicted abundance can provide
more detail and easier interpretations of predictions.
Our results suggest the importance of collecting data
outside the local area to not only capture environ-
mental variation, but also species response variation.
For example, locations with higher abundance of a

species of interest might exist just outside the area of
interest being modeled; excluding data outside the
area increases the possibility of an invasion going
unnoticed. Modeling the potential distribution of
invaders in the local area is essential to non-native
species risk characterization (Stohlgren and Schnase
2006), and only possible by sampling outside the
local area. Collecting additional regional samples may
improve model predictions and reveal patterns missed
by local models.

Extrapolation may restrict predictions

Using BRTs to extrapolate models using local data
to regional extents may constrict the range of
predicted values. Our results show that when
extrapolating local models to regional extents,
predictions in the regional extent will not exceed
the range of predictions within the local extent. For
both S. altissimum and B. gracilis, the models
developed using data collected at the local extent
did not predict abundance values below the mini-
mum or above the maximum predicted within the
local extent (Figs. 2 and 3). Our results are similar to
those of Menke et al. (2009) who looked at
extrapolation of an Argentine ant in southern
California and found if predictions are to be made
for larger un-sampled regions, additional sampling is
needed to capture the environmental variation in
those regions. Similarly, Randin et al. (2006) found

Bouteloua gracilis Sisymbrium altissimum

Local model
predicted %
cover

Regional model
predicted %
cover

Local model
predicted %
cover

Regional model
predicted %
cover

Regional extent

Maximum 44.8 44.4 1.0 4.7

Minimum 11.0 5.4 0.2 0.6

Mean 28.5 25.2 0.6 1.1

Mean standard error 7.2 7.5 0.2 0.6

Range 33.8 39.0 0.7 4.0

Local extent

Maximum 44.8 44.4 1.0 4.7

Minimum 11.0 5.5 0.2 0.7

Mean 27.4 22.1 0.5 1.1

Mean standard error 6.9 7.5 0.2 0.5

Range 33.8 39.0 0.8 4.1

Table 4 Local and regional
model predicted maxima,
minima, means, mean stan-
dard errors, and ranges
across the local and regional
extents
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restricted predictions when extrapolating to another
region. How a model will predict when extrapolated
to novel environments appears to depend on the
specific model implemented (Pearson et al. 2006).
Boosted regression trees fit response curves for each
predictor and, for environmental values outside the
sample variation, the response curves remain con-
stant (Elith and Graham 2009). This explains why
the abundance range for models developed using
only local data was the same for both the local and
regional extent. Other evaluations of SDM extrapo-
lation reveled that models may over predict or under
predict when extrapolated to novel conditions
(Peterson et al. 2007). Thuiller et al. (2004) found
that training a model using limited environmental

conditions may cause unpredictable effects on the tails
of the response curves leading to poor extrapolations to
wider ranges of environmental conditions.

The uncertainty surrounding model extrapolation
will continue to prompt new studies that explore ways
to improve model extrapolations. For example, Miller
et al. (2004) recommend using simple mechanistic
relationships that are well understood when extrapo-
lating beyond narrow ranges. Elith et al. (2010)
suggested smoothing the initial models to improve
fitting a model to the species rather than the specific
data set when the model will be extrapolated. Others
have also recommended using ensemble modeling
(Araujo and New 2007) or improving model calibra-
tion (Phillips and Elith 2010).

Fig. 3 Abundance predictions of S. altissimum local and
regional models shown at two extents. a Local extent
predictions modeled using local data and b local extent
predictions modeled using local and regional data. c Regional

extent predictions from the model developed using local data
extrapolated to regional extent and d regional predictions from
the model developed using local data and regional data
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Modeling abundance using boosted regression trees

Our results show BRTs can be an effective method to
model plant species abundance. We generated accurate
spatial distribution models for plant species abundance
at both local and regional extents.While the use of BRTs
to predict abundance appears promising, uncertainty is
inherent to all models and results should be carefully
interpreted (Elith and Leathwick 2009). More specifi-
cally, decision trees are sensitive to the response data
and environmental predictors being modeled (Berk
2008). Modifying either of these can result in very
different models that have similar measured predictive
abilities (Scull et al. 2005). Interestingly, the S.
altissimum regional model preformed the poorest of
all four models. This may be because S. altissimum is a
generalist species which tend to be more difficult to
predict (Evangelista et al. 2008a) or because of the
relatively low abundance of S. altissimum (often only
observed at 1% cover). While S. altissimum was
generally observed at low abundance values, a few
locations were observed to have over 25% cover. These
high abundances are not common but are important to
recognize for non-native species management, and our
results suggest that BRTs may not predict abundances
that are unusually high. Also of note, none of the
models predicted abundance at 0% while there were
many sampled plots that had 0% cover. This may
indicate the predications should be interpreted as more
of a relative abundance than absolute. Therefore,
modeled abundance predictions may be best applied
in conjunction with model probability of presence. The
probability of presence models can be used to identify
locations of interest from which the abundance
predictions can provide a measure of the biomass at
those locations.

The ability to predict abundance rather than just
probability of presence may provide more than just
where a species may occur but also information on
the quality of habitat (Pearce and Ferrier 2001). In
terms of non-native species, this information may
help managers identify possible susceptible life stages
to control and prevent invasion (Brown et al. 2008).
When managing and monitoring non-native species,
abundance predictions can help prioritize control and
prevention efforts in addition to early detection. Many
SDMs are limited to presence–absence or presence-
only data. This is most likely due to the costs
associated with obtaining abundance data compared

with presence–absences or presence-only data. This
has prompted comparison studies that investigated
possible correlations between probability of presence
and abundance. Unfortunately, these studies found
little correlation, and if so, only between high
probability of occurrence and high abundance (Pearce
and Ferrier 2001; but see Vanderwal et al. 2009).

Conclusions

Extrapolating local models to regional extents is
likely to predict abundance further from observed
values when compared with models that included
regional data. Model extrapolation in time or space is
prone to violating assumptions of SDMs (Wiens et al.
2009). This is especially true for non-native species
because they are rarely at equilibrium with the
environment. When possible, additional samples
should be collected in the regional extent to improve
predictions. These additional data can provide
insights into populations that may be just outside the
local extent and would otherwise go unnoticed. This
information can be important for regional and local
conservation planning in prioritizing management
efforts. Future work may investigate the number of
additional regional samples required and their optimal
location to provide the best predictions. Boosted
regression trees can be a useful tool for modeling,
and while BRTs are still largely unused in ecology
(De’ath 2007), the recent increase of BRTs in the
literature is promising. The ability to take advantage
of BRT capabilities will depend on abundance data
available with the development of large databases
collecting and disseminating ecological data (Graham
et al. 2007). An iterative approach to surveys and
modeling may gain a more comprehensive under-
standing of modeling abundances and possible errors
stemming from model extrapolation. More research
into the use and extrapolation of species distribution
models to predict species abundance is needed to fully
understand the errors and benefits of this approach.
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